Campus Life

The Sacrifices People Make For Science

Just to give you a sense what Macro Island looks like. photo: John Walker, flickr. (click photo to see in original context)

My heart bleeds for those poor scientists forced to spend the week at Marco Island for the Advances in Genome Biology and Technology conference. Not only do they have to put up with temperatures in the 60s (~20 C) and views like the one attached, but consider the grueling workload they labor under even after the sun goes down. (Excerpt from coverage by the Daily Scan):

The real marathon, though, came Thursday night with an increasingly competitive host of vendors vying to throw the best party. As far as Daily Scan can remember, you’d have to go back to the heady days of 2002 or so to see this conference with such participation from vendors, who have to be especially creative now that there’s no exhibit hall. Life Technologies and Caliper hosted parties showing off their new instruments, while Complete Genomics and Ion Torrent offered plenty of opportunity to schmooze with fellow attendees. Friday night we’re expecting fireworks (not the metaphorical kind) from Pacific Biosciences.


One MORE reason pineapples are awesome

Pineapple plant. photo: CameliaTWU, flickr (click photo to see in original context)

Pineapples use CAM photosynthesis. Normally plants have to open tiny holes in their leaves (called stomata) during the day to let in carbon dioxide that they use during photosynthesis. The problem they face is that when they’re letting carbon-dioxide in, plants also let water out.

CAM plants get around this water loss by collecting all their carbon dioxide at night (when it’s not as hot so they lose less water when they open their stomata) and storing it within their leaves until they need it during the day. This allows them to be much more efficient with water than normal plants (ones carry out plain old vanilla C3 photosynthesis.*)

Why do pineapple plants need to be so frugal when it comes to water? The fact that pineapples are native to paraguay and southern brazil is repeated across the internet, but as you can imagine, that description covers a wide range of climates and habitats some of which are much drier than others. Clearly more research on the subject is called for on my part.

The fact that pineapples do CAM photosynthesis came up in a discussion with another guy in my lab where we discussed the fact that pineapples would make an excellent comparison for grass genomes** and have a reasonably small genome at ~500 megabases***, half the size of the recently published soybean and sorghum genomes and less than a quarter the size of the maize genome.

With all these new third generation sequencing technologies coming out in 2010, hopefully someone will sequence the pineapple genome. If not, maybe the cost of sequencing will drop enough while I’m in grad school that I can sequence the genome myself ( a guy can dream).

For more on my long running admiration for pineapple (second only to my appreciation of corn itself):

Why Pineapples are Awesome.

Phylogeny of Pineapple, an further explanation of awesomeness.

*Let the record reflect that corn does C4 photosynthesis, which another awesome variation on the standard system of photosynthesis.

**In addition to both pineapple ¬†and grasses being monocots, they’re in the same order of plants, Poales, as grasses. The first non-grass monocot to be sequenced will almost certainly be the banana (in fact the process as already begun), but while bananas are monocots they belong to a different order¬†Zingiberales (which includes spice plants like ginger, cardamom, and tumeric).

***526 Megabases as cited in Patterson AH, Freeling M, Sasaki, T “Grains of Knowledge” Genome Research 10.1101/gr.3725905