James and the Giant Corn Rotating Header Image

April, 2017:

I may have a slightly skewed idea of normal work habits are

I’m now worked at four different scientific institutions in some capacity or another, and I’m always surprised how empty buildings are when I come in on Saturdays or Sundays. To be clear, I’m certainly not at work every weekend day myself, and I don’t expect the students or collaborators to work weekends.* I’m just realizing that, after 13 years of thinking “wow, people at University X really have a more relaxed approach to research than most places” maybe my idea of how many hours it is normal for a researcher to log in a week might be a tiny bit skewed.**

 

Although, to be fair, 9:15 AM on Easter Sunday might be the MOST representative time point. 😉

*I always say that my mentoring style is to focus on productivity, not hours worked in lab. I’m still working out what that means in practice. For an entertaining — as long as the person writing the e-mail isn’t your boss — glimpse of what the opposite sounds like, be sure to read this classical e-mail from 2002. 

**Growing up, I thought every family had dinner around 8 pm once everyone got home from the office, and that once you got a real job, “weekend” actually meant “sunday morning.”

A new chapter

Whatever anyone tells you, remember to play to your greatest strengths, not your weaknesses.

I’ve been saying it for nearly a decade: pineapples really are awesome

With all these new third generation sequencing technologies coming out in 2010, hopefully someone will sequence the pineapple genome. If not, maybe the cost of sequencing will drop enough while I’m in grad school that I can sequence the genome myself ( a guy can dream).

An incredibly overused graph, but the reason it’s so overused is that it really is a remarkably useful dataset. Source: https://www.genome.gov/sequencingcostsdata/

Although I was a bit overly optimistic back in 2010 about how fast the cost of sequencing (and critically assembling) genomes would decline. Back then we are all talking about sequencing prices dropping 10x every 1-2 years. This turned out of be a quick burst of innovation brought about by second generation sequencing technologies (primarily 454 at first, then Solexa which became Illumina later on). Like many technologies, there was a lot more low hanging fruit for optimization early on, and the cost of sequencing essentially plateaued from 2011 to 2015.

Of course now we’re finally starting to get those economically viable 3rd generation sequencing technologies I though were right around the corner in 2010. And they still have lots and lots of headspace for optimization (pacbio and oxford nanopore being the two most successful ones at the moment) that maybe in another 6-7 years grad students really will be able to generate genome assemblies on a whim.

In the meantime, hey, we did get a pretty cool pineapple genome assembly a couple of years ago.

Ming R., VanBuren R., Wai C. M., Tang H., Schatz M. C., et al., 2015 The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47: 1435–1442.
Also, here’s a fun video of a 3D scan of the internal structure of a pineapple:

Evidence of my ongoing obsession with pineapples.

Science is fun.

Editor’s note: Robert VanBuren, second author on the pineapple genome, and first author on at least one of dozen or so published grass genome sequences got his own research group out at MSU working on CAM photosynthesis and drought. Check it out!