James and the Giant Corn Rotating Header Image

Genetics

Oliva Judson’s Salute to Grasses

People who can actually get the general public interested in science are almost as rare as hen’s teeth.* One of those gifted scientist-communicators is Olivia Judson, an english evolutionary biologist who sometimes writes a column for the nytimes and published an interesting/hilarious pop-science book titled: Dr. Tatiana’s Sex Advice to All Creation: The Definitive Guide to the Evolutionary Biology of Sex.**

I mention all this to explain why I was so excited to learn that her post this week sings the praises of a group of species near and dear to my heart, the grasses. The whole post is definitely worth a read. Even if you don’t learn something you didn’t already know, read it as a source of inspiration for telling OTHER people how cool grasses are. And the closing is truly excellent:

We usually talk of our domestication of grasses, and the ways in which we have evolved them: we have made plants with bigger, more nutritious seeds that don’t fall to the ground, for example.But their effect on us has been far more profound. Our domestication of grasses, 10,000 years ago or so, allowed the building of the first cities, and marks the start of civilization as we know it. Grasses thus enabled the flowering of a new kind of evolution, a kind not seen before in the history of life: the evolution of human culture.

Some of the comments are heart warming to read as well, although a bunch of people have fallen prey to the maize/corn confusion. (Explained in detail here)

*Speaking of cool science that most of the general public doesn’t know about: We’ve known for more than four years that mutations of the gene talpid2 in chickens cause chicken embyros to develop teeth, something we thought birds had lost the ability to do 60-80 million years ago (around the same time grass was bursting onto the world stage.) Don’t worry too much about getting bitten by a sabertoothed turkey, the toothed embryos have other problems that mean they don’t survive.

**There’s also a three-part video series based on the book that I can best describe as … odd.

The Most Studied Genes of Maize (and why we love kernel phenotypes)

Unique citations determined from papered linked to from MaizeGDB gene locus pages. Images of c1 and y1 segregating years by Gerald Neuffer and made available through MaizeGDB.

* = tied for number of citations

** = some mutant alleles have kernel phenotypes.

If you want to become one of the famous mutant corn genes, it helps if you have an effect that is visible in corn kernels instead of only from fully grown plants.

And here is why:

  • A geneticist could determine that the version of c1 that creates yellow kernels is recessive to the version that creates purple kernels just from looking at the ear of corn on left.
  • Furthermore, they could tell you that both the male parent (the plant that provided the pollen) and the female parent (the plant on which the ear of corn grew) were both heteryzygous for the c1 genes (they each had one dominant version of the genes and one recessive version), and therefore the corn kernels the parent plants were grown from were both purple.
  • They would know with certainty that all of the yellow kernels contain two recessive versions of the c1 gene.
  • While they couldn’t predict with absolute certainty whether a specific purple corn kernel on that ear carried two dominant versions of the c1 gene or one dominant and one recessive version, they would know there was a 1/3 chance that kernel has two dominant copies, and a 2/3 chance it had one dominant and one recessive copy.
  • That geneticist could make all sorts of predictions about what ears would look like in future generations depending on what colors of corn kernels were planted and which plants were mated with each other.

All this from a single picture of an ear of corn. For a phenotype seen in corn plants but not in kernels (like Knotted1), a geneticist would have to plant a row or more of corn seeds from an ear and examine the growing plants to get the same quantity of information.

And that is why mutations with kernel phenotypes have been so popular over a century of maize genetics research.

How many maize/corn genes have actually been studied? (Not a lot)

When the maize genome paper came out last November (see the summary of this blog’s maize day coverage) it included information on 32,690 genes within the maize genome.  These were the genes which the researchers involved in sequencing the genome were very confident really were genes. And by themselves those 30,000+ genes put the maize genome way ahead of our own. Of course EVERY plant genome ever sequenced has contained more genes than we do, so you’d think by now this wouldn’t be news any more. We’re not the most genetically complex creatures on the planet, and we’ll just have to learn to live with that fact.

But where was I? Oh yeah, gene counts. 32,690 high confidence genes*. Of those, how many have been studied individually? (more…)

Why to Celebrate the Publication of the Brachypodium Genome

Brachypodium distachyon (photo courtesy of Devin O'Conner)

Sorry this is late going up. -James

This morning Nature officially published the paper* describing the sequence of the Brachypodium distachyon genome. This publication brings the number of grass genomes available for comparative analysis to four. In celebration I’m going to list four reasons to be excited about the publication of this genome.

The location of Brachypodium within the grass family tree.

Brachy (as I will refer to the species from here on) is a member of the Pooideae a sub-family of grasses from which no sequenced grasses have come. For the work we do in my lab this is exciting because it adds more depth to our analysis of changes in the grass genomes. The more distantly related grasses we can compare at the whole genome level, the better we can infer what the ancestral species that gave rise to all the grasses might have been like at a genome level. The most we know, or can make educated guesses about that species, the better position we are in to say what changed along the evolutionary paths leading to grasses like maize, rice, and sorghum. The choice of the Pooideae wasn’t at random, or even because of the sub-family’s distant relationship to other sequenced grasses. (more…)

The Taste of Tomatoes + Tomato Mutagenesis

An anonymous indian tomato vendor in Chennai, Tamal Nadu. photo mckaysavage, flickr (click to see photo in it's original context)

First, since I didn’t explicitly state it in my previous post, the paper on the longer lasting tomatoes developed by India’s National Institute for Plant Genome Research didn’t report any data on how the RNAi knock-down tomatoes actually taste.* The tomatoes are nearly twice as firm as tomatoes in which these genes are NOT knocked down, so it’s possible they’d seem unpleasantly crunchy, I don’t know how doubling the firmness of a tomato translates into the feeling when a person bites into one.

On the other hand, if the tomatoes do turn out to be tasty and delicious, it’s quite possible the trait could be replicated without genetic engineering. And if that turns out to be true, it’s absolutely the approach anyone developing longer lasting farmers to Indian farmers, or farmers anywhere, should take (for why I’m saying this, check out the bit in bold further into this post). (more…)

Scientists at India’s NIPGR Create a Longer-Lasting Tomato (Studying The Regulation of Fruit Ripening)

ResearchBlogging.org

Author’s note: This would seem to be the week for vegetables I hated as a kid. Yesterday was onion, today tomato, if there’s a story about brinjal/eggplant in the next few days we’ll have hit all the big ones. 😉

Ripening tomatoes. Photo: Photos_by_Lina, fickr (click to see photo in its original context)

I was recently pointed to an early publication paper that went up on the Proceedings of the National Academy of Sciences website on Monday, where a research group at India’s National Institute of Plant Genome Research describes two genes from tomato that, when knocked down by RNAi*, result in tomatoes that can remain ripe but not spoiled for up to three times as long as tomatoes where these two genes function normally.

Their approach targets specific genes involved in breaking down certain proteins found in the cell walls of tomatoes (in fact in the cell walls of all plants). Breaking down the cell wall is a key part of ripening in fruits (which the tomato is, botanically if not culinarily). Which makes sense if you’ll think about it for a moment. One of the traits we associate with ripening is getting softer, from bananas to peaches if it’s still crunchy when you bite into it, it wasn’t ripe. What makes plants stiff and crunchy? The strength of their cell walls. Since, unlike vegetables, fruits WANT to be eaten**, as they ripen they begin to break down their cell walls to make themselves more appealing to passing animals. Unfortunately, ripening and spoiling are, in a lot of ways, the same process. If fruits aren’t eaten when they become ripe, they continue to get softer, transitioning from delicious looking -> unappetizing -> inedible -> a puddle of mush on your kitchen counter.

Preventing ripening entirely is relatively easy, and there are plenty of known mutants in tomatoes and other species that never ripen (these naturally mutant tomatoes stay green and hard no matter how long you wait). But getting part of the way to ripeness but stopping before crossing the line into spoiled is a much less tractable problem. (more…)

“New” Cruciferous Vegetables

A stalk of brussels sprouts photo credit: cbmd, flickr (click for photo in original context)

Last week Greg over at Pie-ence was talking about the amazing variety of vegetable crops breed out of a handful of species within the genus Brassica, specifically Brassica rapa and Brassica oleracea.* I’m referring to these as cruciferous vegetables, which is actually a wider category including all the vegetables within the mustard family of plants (scientifically this is called the Brassicaceae). But one of the cool things about having so many kinds of vegetables within the same couple of species is that, because they’re the same species, they can still be interbreed with each other to create “new”** vegetables. (more…)

Genome Sequencing vs Genetic Mapping

There was a recent paper in Science about the mapping of the Artemisia annua genome. I’ve seen several people interpret this as another genome sequence. It’s hard to blame anyone for this confusion given headlines like “Scientists map the maize genome!” to describe the sequencing of the maize genome. So what’s the difference between a sequenced genome and a mapped genome? I’m glad you asked! (more…)

The Newly Published Soybean Genome and Fractionation

Here’s the key statistic: The maize genome paper estimated that roughly a quarter of maize genes are currently retained as duplicate pairs from maize’s whole genome duplication, while the soybean paper estimates just over half of soybean genes are similarly retained after soybean’s (apparently slightly older) duplication. <– had it buried at the end of this, but figured it’d be more fun to start out with something cool.

But first of all, let’s do this the right way this time. Here’s the paper in Nature describing the soybean genome. Here’s one of the places you can download the entire sequence from. Hopefully that establishes, beyond a reasonable doubt, that the soybean genome has, in fact, been published. (more…)

Strawberry Genome Sequenced (Correction included)

After already needing to correct this post, I must now invalidate the whole thing. Seems I’ve been taken in by a premature press release that was turned into reliable sounding articles on news sites and was then picked up by blogs like mine that took the those sites to be credible sources. It’s a big mess. ::sigh::

Among the many things I’m currently missing at the Plant and Animal Genome conference, in addition to an update on the banana genome I’ve just learned (thanks to Mary over at OpenHelix) that the sequencing of the woodland strawberry genome has been completed!

I don’t know yet if the sequence has been released to the public yet. Either way I can’t find the sequence so I can’t yet comment on the quality of the sequence, or any ancient duplications in the lineage (though we already know it must share the ancient hexaploidy of the rosids, possible all eudicots).

Wild diploid strawberry (left) and domesticated octoploid strawberry (right)

What we do know is that modern domesticated strawberries are octoploid, the result of two recent whole genome duplications, but the woodland strawberry doesn’t have any duplications modern enough to be obvious from cytogenetics, visually looking at chromosomes.

Sequencing a genome is a complicated process but it started out with the work of Janet Slovin, a USDA scientist who created the inbred line* used in sequencing and seems to be the front woman from the project (Janet was kind enough to comment and point out the original article was misleading on this point, check out the link she included as well!), she’s quoted in the linked article.
And if you know how I can get my hands on the sequence please PLEASE, drop me a line at jcs98 (at) jamesandthegiantcorn (dot) com.